Degree Fields
State Portals
Industry Options
Precollege Ideas
Academic DegreesCareer Planning
University Choice
Diversity & WomenCornerstone News
Site Search / A -Z

Bookmark and Share


Motor Vehicle and Parts Manufacturing

Related Profiles of Professionals

Industry Overview
Despite news of plant closures and unemployed auto workers, the motor vehicle and parts manufacturing industry continues to be one of the largest employers in the country and a major contributor to our economy. Motor vehicle and parts manufacturing is constantly evolving to improve efficiency and provide products that consumers want in a highly competitive market, which at times may mean outdated plants are forced to close. It also means companies and workers must adapt more quickly to changes in demand and production practices so that new technologies can be implemented and work can be done on a number of different vehicles at one time. Teamwork and continual retraining are key components to the success of this industry and the ability of the workforce to adapt.

Motor vehicle and parts manufacturers also have a major influence on other industries in the economy as well. Building motor vehicles requires vast quantities of materials from, and creates many jobs in, industries that manufacture steel, rubber, plastics, glass, and other basic materials. It also spurs employment for automobile and other motor vehicle dealers; automotive repair and maintenance shops; gasoline stations; highway construction companies; and automotive parts, accessories, and tire stores.

The motor vehicles manufactured in this industry include automobiles, sport-utility vehicles (SUVs), vans and pickup trucks, heavy duty trucks, buses, truck trailers, and motor homes. It also includes the manufacturing of the parts that go into these vehicles, such as the engine, seats, brakes, and electrical systems. According to the Federal Reserve, over 8 million motor vehicles were assembled in the U.S. in 2008. Building and assembling the many different parts of a car or truck requires an amazingly complex design, manufacturing, and assembly process.

Industry Organization
About 9,100 establishments manufactured motor vehicles and parts. These ranged from small parts plants with only a few workers to huge assembly plants that employ thousands. By far, the largest sector of this industry is motor vehicle parts manufacturing. It has the most establishments and the most workers. About 7 out of 10 establishments in the industry manufactured motor vehicle parts—including electrical and electronic equipment; engines and transmissions; brake systems; seating and interior trim; steering and suspension components; air-conditioners; and motor vehicle stampings, such as fenders, tops, body parts, trim, and molding.

Percent distribution of employment and establishments in motor vehicle and parts manufacturing by detailed industry sector, 2008
Industry sector Employment Establishments
Total 100.0 100.0
 
Motor vehicle parts manufacturing 61.5 68.4
Motor vehicle manufacturing 22.2 5.4
Motor vehicle body and trailer manufacturing 16.3 26.3
SOURCE: U.S. Bureau of Labor Statistics Quarterly Census of Employment and Wages, 2008.

The next largest sector in terms of employment is motor vehicle manufacturing. In 2008, about 22 percent of all workers in the overall motor vehicle manufacturing industry were engaged in the assembly of motor vehicles. A large number of these assembly plants are owned by foreign automobile makers, known as "domestic internationals." These foreign automobile manufacturers open assembly plants in the United States to be closer to the U.S. market, avoid changing exchange rates, and reduce transportation costs.

A typical automotive assembly plant is divided into three major sections. In the first section, exterior body panels and the interior frame are assembled and welded together. This work is mostly performed by robots, but may also require some manual welding. During this stage, the body is attached to a conveyor system that will move it through the entire assembly process. Throughout the entire process, numerous inspections are performed to ensure the quality of the work.

The painting process comprises the second section of the assembly plant where bodies of cars pass through a series of carefully ventilated, sealed paint rooms. Here, the bodies are dipped into chemicals to prevent rust and seal the metal. Then the bodies are primed, painted, and sealed with a clear coat.

Final assembly of the vehicle comprises the third section of the automobile manufacturing process. Here, parts such as the seats, dashboard, and powertrain (engine and transmission) are installed. Although machines assist with loading heavy parts, much of the assembly work is still performed by team assemblers working with power tools.

The smallest sector in terms of employment is motor vehicle body and trailer manufacturing. In 2008, about one-fourth of establishments were engaged in this type of manufacturing. These establishments specialized in manufacturing truck trailers; motor homes; travel trailers; campers; and car, truck, and bus bodies placed on separately purchased chassis.

Recent developments
The U.S. auto industry has been severely affected by the recession that began in December 2007. New car sales fell considerably, which caused manufacturers to cut production and employment dramatically. In addition, two of the three domestic automakers entered bankruptcy in 2009, although they have since emerged. While the domestic automakers remain a critical part of the industry, motor vehicle and parts manufacturing is increasingly a global industry, with "domestic" vehicles produced using parts manufactured around the world and many "foreign" firms producing on U.S. soil.

Automobile technology is rapidly changing due to environmental concerns and regulation. More fuel-efficient vehicles, such as hybrid-electric cars that combine gasoline engines with high-capacity, energy-storing batteries, have quickly gained popularity in the industry. There has been some experimentation with full electric and alternative fuel vehicles, but these technologies have not yet become widespread, and research and development for new types of environmentally friendly vehicles continues.

Working Environment 
In 2008, about 29 percent of workers in the motor vehicle and parts manufacturing industry worked, on average, more than 40 hours per week. Overtime is especially common during periods of peak demand.
Although working conditions have improved in recent years, some production workers still are subject to uncomfortable conditions. Heat, fumes, noise, and repetition are not uncommon in this industry. In addition, many workers come into contact with oil and grease and may have to lift and fit heavy objects, although hydraulic lifts and other equipment have eliminated much of the heavy lifting. Employees also may operate powerful, high-speed machines that can be dangerous. Accidents and injuries usually are avoided when protective equipment and clothing are worn and safety practices are observed. Additionally, companies use carefully designed work stations and physical conditioning to reduce injuries from repetitive motions.

As in other industries, professional and managerial workers normally have clean, comfortable offices and are not subject to the hazards of assembly line work. However, many supervisors and plant managers still need to visit the assembly line and face some of the same hazards as assembly line workers.

Employment
Motor vehicle and parts manufacturing was among the largest of the manufacturing industries in 2008, providing 877,000 jobs. The majority of jobs, about 62 percent, were in firms that make motor vehicle parts. About 22 percent of workers in the industry were employed in firms assembling complete motor vehicles, while about 16 percent worked in firms producing truck trailers; motor homes; travel trailers; campers; and car, truck, and bus bodies placed on separately purchased chassis.

Although motor vehicle and parts manufacturing jobs are scattered throughout the Nation, jobs are concentrated in the Midwest and South. Michigan, Ohio, and Indiana combined account for almost half of all jobs in this industry. Other States that account for significant numbers of jobs include Kentucky, Tennessee, and California. Automotive employment is shifting away from its traditional base in the Midwest to the southeastern States.

Employment is concentrated in a relatively small number of large establishments. About 49 percent of all motor vehicle and parts manufacturing jobs were in establishments employing 500 or more workers. Motor vehicle manufacturing employment, in particular, is concentrated in these large establishments, whereas many motor vehicle parts manufacturing jobs are found in small- and medium-sized establishments.

Motor vehicle manufacturing corporations employ many additional workers in establishments that are parts of other industries. Often the jobs in corporate headquarters are in separate establishments and would be classified as part of a different industry. Likewise, workers in research and development (R&D) establishments that are separate from a manufacturing facility are included in a separate industry—for example, R&D in the physical, engineering, and life sciences. However, given the importance of R&D work to the motor vehicle and parts manufacturing industry, occupations and issues related to R&D are discussed below even though some of their employment is not included in the motor vehicle manufacturing industry.

Degree Paths into this Industry
Prior to assembling components in the manufacturing plant, extensive design, engineering, testing, and production planning go into the manufacture of motor vehicles. These tasks often require years to complete and cost millions of dollars.

Using artistic talent, computers, and information on product use, marketing, materials, and production methods, commercial and industrial designers create designs they hope will make the vehicle competitive in the marketplace. Designers use sketches and computer-aided design techniques to create computer models of proposed vehicles. These computer models eliminate the need for physical body mockups in the design process because they give designers complete information on how each piece of the vehicle will work with others. Workers may repeatedly modify and redesign models until the models meet engineering, production, and marketing specifications. Designers working in parts production increasingly collaborate with manufacturers in the initial design stages to integrate motor vehicle parts into the design specifications for each vehicle.

Engineers -- who form the largest professional contingent in the industry -- play an integral role in all stages of motor vehicle manufacturing. They oversee the building and testing of the engine, transmission, brakes, suspension, and other mechanical and electrical components. Using computers and assorted models, instruments, and tools, engineers simulate various parts of the vehicle to determine whether each part meets cost, safety, performance, and quality specifications. Mechanical engineers design improvements for engines, transmissions, and other working parts. Electrical and electronics engineers design the vehicle's electrical and electronic systems, as well as industrial robot control systems used to assemble the vehicle. Industrial engineers concentrate on plant layout, including the arrangement of assembly line stations, material-moving equipment, work standards, and other production matters.

Under the direction of engineers, engineering technicians prepare specifications for materials, devise and run tests to ensure product quality, and study ways to improve manufacturing efficiency. For example, testing may reveal how metal parts perform under conditions of heat, cold, and stress, and whether emissions-control equipment meets environmental standards. Finally, prototype vehicles incorporating all the components are built and tested on test tracks, on road simulators, and in test chambers that can duplicate almost every driving condition, including crashes.

Computer systems analysts work with computer systems to improve manufacturing efficiency. After working out the many details involved, computer specialists help put in place the machinery and tools required for assembly line production of the vehicle.

Industry Forecast
Continued productivity improvements and foreign outsourcing of parts production will cause employment to decline over the next decade. Overall wage and salary employment in the motor vehicle and parts manufacturing industry is expected to decline by 16 percent over the 2008-18 period, compared with 11 percent growth for all industries combined. Although more automobiles and light trucks will be manufactured in the U.S. over this period, productivity improvements will enable manufacturers to produce these vehicles and parts with fewer workers.
The growing intensity of international and domestic competition has increased cost pressures on manufacturers. In response, they have sought to improve productivity and quality with high-technology production techniques, including computer-assisted design, production, and testing. In addition to automation, both domestic and foreign-based manufacturers will reduce costs by shifting some parts and vehicle production to lower wage countries.

Expanding factory automation, robotics, efficiency gains, and the need to cut costs will cause nearly all production occupations to decline, but some occupations will decline more than others. Increasing automation will negatively affect employment of basic machine operator occupations more so than it will affect the skilled workers that operate and program robots. Assemblers who only perform one or two tasks will be replaced by team assemblers who are interchangeable on a team and can perform multiple functions. Greater automation will boost demand for maintenance workers who service and repair the robots and automated systems essential to a factory.

Employment of management, computer, office, and administrative support occupations will also decline as the number of production workers, whom these workers manage, supervise, and support, declines.
Job prospects. Due to the increasingly automated and sophisticated nature of motor vehicle manufacturing and assembly, employers are seeking a better educated workforce. Applicants for assembly jobs will likely face competition, but opportunities will be best for those with a 2-year degree in a technical area. Applicants for maintenance jobs should also face competition. As automakers shift to multi-skilled maintenance personnel, opportunities will be best for those with skills across a range of areas, such as hydraulics, electronics, and welding. Employers use screening tests for new applicants and state that both strong math and communication skills are necessary to pass these tests.

Employment in the automobile manufacturing industry follows economic cycles, therefore it can be volatile. It is common for workers to get laid off as production slows, then possibly rehired when production picks up again. Job openings are expected due to the large number of auto workers who will retire in the coming decade. Some of the foreign plants built in the 1980s will see high turnover as a large proportion of their workers retire. Overall, job applicants will face keen competition, but highly skilled workers will have the best employment prospects.

Related Degree Fields

Professional Associations

Note: Some resources in this section are provided by the US Department of Labor, Bureau of Labor Statistics.
 


Science
Technology
Engineering
Mathematics
Computing
Healthcare


Students
Counselors
Teachers
Parents
Graduates

      AboutContactsCopyrightMedia SupportSubscriptions