Degree Fields
State Portals
Industry Options
Precollege Ideas
Academic DegreesCareer Planning
University Choice
Diversity & WomenCornerstone News
Site Search / A -Z

Machinery Manufacturing

Industry Overview
The development and deployment of machinery was responsible for one of the great advances in human history, the industrial revolution. Machinery encompasses a vast range of products, ranging from huge industrial turbines costing millions of dollars to the common lawn mower, but all machinery has one common defining feature: it either reduces or eliminates the amount of human work required to accomplish a task. Machinery is critical to the production of many of the Nation's goods and services because nearly every workplace in every industry uses some form of machinery. From the farm tractor to the commercial refrigerator in use by your favorite restaurant, machinery is necessary for the way we live today. Thus, while people never use or even see most of the machinery that makes their lifestyles possible, they use the products it makes every day.

Industry Organization
The machinery manufacturing industry comprises seven more detailed industry segments, as shown in table 1. Three of these make machinery designed for a particular industry -- called special purpose machinery: agriculture, construction, and mining machinery manufacturing, industrial machinery manufacturing, and commercial and service machinery manufacturing. The other four segments make machinery used by many different industries -- called general purpose machinery: ventilation, heating, air-conditioning, and commercial refrigeration equipment manufacturing, metalworking machinery manufacturing, engine, turbine, and power transmission equipment manufacturing; and other general purpose machinery manufacturing.

Percent distribution of employment and establishments in machinery manufacturing by detailed industry sector, 2008
Industry segment Employment Establishments
Total 100.0 100.0
Agriculture, construction, and mining machinery manufacturing 20.0 11.9
Metalworking machinery manufacturing 16.0 32.6
Ventilaton, heating, air-conditioning, and commercial refrigeration equipment manufacturing 12.6 7.0
Industrial machinery manufacturing 10.2 13.3
Commercial and service industry manufacturing 9.0 9.3
Engine, turbine, and power transmission equipment manufacturing 8.8 3.8
Other general purpose machinery manufacturing 23.3 22.1
SOURCE: BLS Quarterly Census of Employment and Wages, 2008.

The metalworking machinery industry segment makes the machinery and tools that form, cut, and shape metals. The same properties that make metal a desirable component in many goods—strength and durability—also make it a difficult material to form. The specialized drills, grinders, molds, presses, and rollers needed to form metal, as well as the accessories used by these machines, are made in this industry. Metalworking machinery manufacturing has a disproportionately large share of the establishments that make up the machinery manufacturing industry because many such shops are small, with over half employing fewer than 20 workers.

The agriculture, construction, and mining machinery manufacturing industry segment is made up of much larger establishments that produce both large, sophisticated machines and common household equipment. Examples include leaf blowers and tillers, for personal and commercial use; bulldozers and backhoes, used in construction of roads and buildings; grinders and borers, used for both surface and underground mining; and oil and gas field drilling machinery and derricks, used for extracting these resources.

The ventilation, heating, air-conditioning, and commercial refrigeration equipment manufacturing industry segment makes climate-control machinery for residential and commercial buildings. In addition to heating and cooling equipment, this industry makes air purification equipment, which is increasingly common in new construction, and commercial refrigeration equipment, which is used primarily for food storage.

The commercial and service machinery manufacturing industry segment produces the machinery that is used by firms that provide services. For example, firms in this segment produce commercial versions of household appliances -- such as laundry equipment used in laundromats, coffee makers, and microwave ovens used by restaurants, and vacuum cleaners used by cleaning services. Other large components of this industry are manufacturers of automatic vending machines, non-electronic office machinery like typewriters and mail sorters, non-digital cameras, photocopiers, and machinery used to make optical lenses.

The industrial machinery manufacturing industry segment makes machinery used to produce finished goods from raw materials. The materials processed by this segment's products include wood, plastics, rubber, paper, textiles, food, glass, and oil. Machinery manufactured in this segment also is used in printing and bookbinding and in making semiconductors and circuit boards.

The engine, turbine, and power transmission equipment manufacturing segment includes a variety of machines that transfer one type of work into another. Turbines use the energy from the motion of steam, gas, water, or wind to create mechanical power by turning a drive shaft. Along with gears, speed changers, clutches, drive chains, and pulleys—all also made in this segment—turbines put assembly lines and other industrial machinery in motion. Attached to a generator, turbines also create electrical power. This industry segment also produces diesel and other internal combustion engines and their components that are used to power portable generators, air compressors, pumps, and other equipment. Aircraft and motor vehicle engines are made by the aerospace product and parts manufacturing and motor vehicle and parts manufacturing industries, respectively, which appear elsewhere in the Career Guide.

The last segment -- other general purpose machinery manufacturing -- produces miscellaneous machines used primarily by manufacturing industries. These include pumps, compressors, welding and soldering equipment, and packaging machinery. This segment also makes a variety of materials handling equipment -- such as industrial trucks and tractors, overhead cranes and hoists, conveyors, and many types of hydraulic equipment -- used in manufacturing and other industries. Other common machinery produced by this segment includes scales and balances, power-driven handtools, and elevators, escalators, and moving walkways.

The wide range of products made in the machinery manufacturing industry means that it includes establishments of all sizes. In general, however, the larger and more complicated the machinery is, the larger the manufacturing facility must be to produce it. Thus, large establishments tend to be a characteristic of the agriculture, construction, and mining machinery and the ventilation, heating, air-conditioning, and commercial refrigeration equipment segments, while the metalworking machinery segment has the smallest ones.

The size of an establishment also contributes to how some machinery is produced. Large firms involved in manufacturing machinery tend to have a multistage production process, with separate teams of individuals responsible for design and testing, manufacture of parts, and for assembly of the finished product. Nonetheless, there is considerable interaction between the various types of workers; for example, design offices are often located near the factory floor to promote interaction with production workers. Small establishments, in contrast, may have a handful of workers responsible for the entire production process.

Recent Developments
The machinery manufacturing industry, like all U.S. manufacturers, continues to evolve. Domestic and foreign competition has required the industry to adopt new technologies and techniques to lower costs and raise the productivity of its workforce. For example, using high-technology production techniques, including robots, computers, and programmable equipment results in productivity gains and helps to maximize the use of available equipment and workers. Increasing technology and automation also reduces the number of unskilled workers needed in the production process.

Pressures to reduce costs and maximize profits have also caused manufacturers in the industry to adopt new business practices. One example is the practice of contracting out support functions, such as janitorial and security jobs, and increasing numbers of administrative services and warehouse and shipping jobs. Rather than employ workers directly for these jobs, a manufacturer will often contract with another company that specializes in providing these services. This practice reduces costs by forcing service providers to compete for the work, allows manufacturers to focus on their core design and production activities, and increases manufacturers' flexibility by letting them add and subtract contract workers more easily than they could hire and fire employees.

These changes have had a profound effect on the machinery manufacturing workforce. By automating many of the production processes and outsourcing many of the administrative and support functions, it has reduced the need for many less skilled workers and increased the skill level required for the remaining workers. These changes are allowing the industry to remain competitive and meet the demand for machinery that other industries rely on.

Working Environment 
Production workers in the machinery manufacturing industry generally encounter conditions that are much improved from the past. New facilities in particular tend to be clean, well lighted, and temperature controlled. Noise can still be a factor, however, especially in larger production facilities. 

The machinery manufacturing industry provided 1.2 million wage and salary jobs in 2008. Employment was relatively evenly distributed among all segments of the industry. There were about 30,500 establishments in the industry; about 15,100 employed fewer than 10 workers. However, 40 percent of workers were employed in establishments of 250 workers or more.

Percent distribution of employment and establishments in machinery manufacturing by detailed industry sector, 2008
Industry segment Employment Establishments
Total 100.0 100.0
Agriculture, construction, and mining machinery manufacturing 20.0 11.9
Metalworking machinery manufacturing 16.0 32.6
Ventilaton, heating, air-conditioning, and commercial refrigeration equipment manufacturing 12.6 7.0
Industrial machinery manufacturing 10.2 13.3
Commercial and service industry manufacturing 9.0 9.3
Engine, turbine, and power transmission equipment manufacturing 8.8 3.8
Other general purpose machinery manufacturing 23.3 22.1
SOURCE: BLS Quarterly Census of Employment and Wages, 2008.

Although machinery manufacturing jobs are located throughout the country, certain States account for the greatest numbers of jobs. About a third of all jobs were located in the Midwestern States of Illinois, Indiana, Michigan, Ohio, and Wisconsin. Populous states such as California, Texas, New York, and Pennsylvania also had large numbers of jobs.

Degree Paths into this Industry
It takes a wide variety of occupations to create and produce a machine, including engineers, technicians, production and assembly workers, supervisors and managers, and support personnel.

Before any work can begin on the production of a particular piece of machinery, an extensive process to create and test the design must be completed. This process can take up to several years, depending on the complexity of the machinery. The work is done primarily by engineers and technicians, although because of the range of tasks involved, different types of these workers are required.

Engineering managers oversee the entire design process. Much of the design work is done by engineers, who first develop a concept of what a new machine should do or how an existing one could be improved. Starting with this concept, they use computer modeling and simulating software to design the machine. Using software and prototypes, they also test performance, cost, reliability, ease of use, and other factors important to both producers and consumers of the final product.

Most engineers specialize in a particular facet of design. Mechanical engineers design the moving parts of the machine, such as the gears, levers, and pistons in engine and hydraulic systems. They also direct the work of mechanical engineering technicians, who run tests on materials and parts before they are assembled into the final product. For machines with complicated electric or electronic systems, electrical and electronics engineers also assist in the design and testing process. Industrial engineers determine how best to allocate the resources of the factory -- both workers and equipment -- for optimal production.

Once a design is finished and simulation testing is complete, mechanical drafters create the plans that production workers use in the assembly of the machine. They provide specifications and diagrams for each part required, as well as assembly instructions for the final product.

Computer control programmers and operators manage the automatic metalworking machines that can mass produce individual parts. They also write programs based upon the specifications of the part that defines what operation the machine should perform. Machinists produce precision parts that require particular skill or that are needed in quantities too small to require the use of automated machinery. Welding, soldering, and brazing workers operate machines that join two or more pieces of metal together; they may also weld manually as well.

The sales function for many companies is increasingly important; sales representatives and sales engineers often work together to market the company's machines to potential buyers, demonstrating how the machine may reduce costs or increase sales. They also explain how to operate the machine and answer buyer's questions. Sales engineers, in particular, use their technical background to advise clients on how the machine can best be applied in their individual circumstances and to suggest custom designs or modifications to the equipment as needed.

Industry Forecast
Employment in machinery manufacturing is expected to continue its long-term decline as productivity increases allow companies to produce more goods with fewer workers.

Wage and salary employment in the machinery manufacturing industry is expected to decrease 8 percent over the 2008-18 period compared with an 11 percent increase for all industries combined. Most segments of the industry are expected to experience a decline in employment.

The main factor affecting the level of employment in the machinery manufacturing industry is the high rate of productivity growth. Increases in productivity allow companies to produce more goods with the same number of workers. Even though output in machinery manufacturing is expected to increase significantly, firms will be able to meet the increase through higher productivity of existing workers, rather than by creating new jobs. Import competition is not as big of a factor in machinery manufacturing as in other sectors of the manufacturing industry. Machines must be made precisely, requiring highly skilled employees; as a result, most production will continue to be located domestically.

In contrast to the projected declines in employment, demand for machinery is expected to remain strong. Machinery is important for all industries because it boosts productivity, and advances in technology will make machinery even more efficient and thus more desirable. Demand for machinery is highly sensitive to cyclical swings in the economy, however, causing employment in machinery manufacturing to fluctuate. During periods of economic prosperity, companies invest in new equipment in order to boost production. When economic growth slows, however, many companies are reluctant to purchase new machinery. These changes in demand cause machinery manufacturers to replace fewer workers who leave or even lay off some workers.

Although overall employment in the machinery manufacturing industry is expected to decline, the outlook for occupations will vary; some will experience larger declines than others, while some will even experience growth instead. Increased automation and more efficient production processes will cause employment declines in assembler and fabricator occupations. Office and administrative support workers will also experience declines as a result of increased automation and contracting out. Employment in professional occupations will experience smaller declines relative to other occupations in the industry, as these workers are responsible for increasing innovation and competitiveness in the industry.

Despite the decline in employment projected for this sizeable industry, a significant number of job openings will become available because of the need to replace workers who retire or move to jobs outside of the industry. Machinery manufacturing establishments will continually be seeking to hire more highly skilled workers, especially persons with good basic educational skills that make good candidates to be trained for the high skilled jobs of twenty-first century manufacturing. Workers with these skills are expected to experience good job prospects.

Related Degree Fields

Professional Associations

Note: Some resources in this section are provided by the US Department of Labor, Bureau of Labor Statistics.



      AboutContactsCopyrightMedia SupportSubscriptions